Séquence 7 : Variables aléatoires discrètes finies

I) Notion de variable aléatoire

A) Variable aléatoire

Définition:

Une variable aléatoire X est une fonction définie sur Ω et à valeurs dans \mathbb{R} , qui à tout élément de Ω fait correspondre un nombre réel.

Remarques:

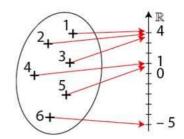
- Comme Ω est fini, l'ensemble des valeurs prises par X est fini. On parle de variable aléatoire discrète.
- On nomme en général les variables aléatoires avec une lettre majuscule.

Exemples:

On lance un dé équilibré à six faces numérotées de 1 à 6. Lorsque la face supérieure indique :

- 1, 2 ou 3, on gagne 4 €
- 4 ou 5, on gagne 1 €
- 6, on perd 5 €

On définie une variable aléatoire réelle X qui au numéro obtenu associe le gain, en euro, du joueur. Cette variable aléatoire prend les valeurs -5; 1; 4.



Notations:

Soit a un nombre réel. On note :

- $\{X = a\}$ l'événement "la variable aléatoire X prend la valeur a".
- $\{X \le a\}$ l'événement "la variable aléatoire X prend une valeur inférieure ou égale à la valeur a".

B) Loi de probabilité

Définition:

 Ω est l'ensemble fini des issues d'une expérience aléatoire.

X est une variable aléatoire réelle définie sur Ω qui prend les valeurs x_1, x_2, \dots, x_n .

Définir la loi de probabilité de X, c'est associer à chaque valeur x_i (avec $1 \le i \le n$), la probabilité de l'événement $\{X = x_i\}$, notée $P(X = x_i)$.

Remarque:

On présente souvent la loi de probabilité de la variable aléatoire X à l'aide du tableau ci - dessous (avec $x_1 \le x_2 \le ... \le x_n$).

Valeur de X	x_1	x_2	•••	x_n
$P(X = x_i)$	p_1	p_2	•••	p_n

Exemples:

En reprenant l'exemple précédent, la loi de probabilité de la variable aléatoire est donné par le tableau suivant.

x_i	-5	1	4
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$

C) Espérance

La notion d'espérance est introduite par Christian Huygens dans son Traité du hasard de 1656 sous le nom de "valeur de la chance".

Définition:

On considère une expérience aléatoire d'univers fini Ω . Soit X une variable aléatoire définie sur Ω et qui prend n valeurs x_1, x_2, \ldots, x_n de probabilités respectives p_1, p_2, \ldots, p_n .

La loi de probabilité de *X* est donnée par le tableau suivant.

Valeur de X	x_1	x_2	•••	x_n
$P(X = x_i)$	p_1	p_2		p_n

L'espérance de X est le nombre noté E(X) défini par :

$$E(X) = \sum_{i=1}^{n} x_i \times p_i = x_1 \times p_1 + x_2 \times p_2 + \dots + x_n \times p_n$$

Exemples:

On reprend l'exemple précédent et on rappelle que la loi de probabilité de la variable aléatoire X est donnée par le tableau suivant.

x_i	-5	1	4
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$

$$E(X) = -5 \times \frac{1}{6} + 1 \times \frac{1}{3} + 4 \times \frac{1}{2}$$

$$E(X) = \frac{-5}{6} + \frac{1}{3} + \frac{4}{2}$$

$$E(X) = \frac{-5}{6} + \frac{2}{6} + \frac{12}{6} = \frac{9}{6} = 1.5$$

L'espérance est égale à 1.5 cela signifie qu'en jouant un grand nombre de fois, on peut espérer gagner en moyenne environ $1.5 \le$.

II) Loi binomiale

Rappel : On appelle épreuve de Bernoulli une expérience aléatoire dans laquelle on s'intéresse à la réalisation d'un événement particulier qu'on appelle le succès de probabilité p. Sa non réalisation s'appelle l'échec.

A) Définition

Définition:

La répétition de façon identique et indépendante de n épreuves de Bernoulli de paramètre p donne un schéma de Bernoulli de paramètres n et p.

La variable aléatoire X qui compte le nombre de succès obtenus suit alors la loi binomiale de paramètres n et p. On note :

$$X \sim \mathcal{B}(n; p)$$

Exemples:

Un magasin propose à ses clients sa nouvelle carte de fidélité. On suppose que la probabilité qu'un client l'accepte est de 0.4. Lorsqu'un client se présente à la caisse, il peut l'accepter ou la refuser. 5 clients se présentent à la caisse, chacun fait son choix indépendamment des autres.

Soit X la variable aléatoire qui donne le nombre de succès. Donner la loi de probabilité de la variable aléatoire X en précisant ses paramètres.

Résolution:

On effectue la répétition de 5 épreuves de Bernoulli, identiques et indépendantes, avec une probabilité p de succès égale à 0.4. X suit la loi binomiale de paramètre n = 5 et p = 0.4. On écrit $X \sim \mathcal{B}(5; 0.4)$

B) Espérance

Propriété:

Soit la variable aléatoire X qui suit la loi binomiale de paramètre n et p. On a :

$$E(X) = n \times p$$

Exemple:

70 % des Français possède un compte sur un réseau social.

On assimile le fait de choisir au hasard 10 personnes à un tirage aléatoire avec remise.

Soit X la variable aléatoire associant à chaque groupe de 10 personnes le nombre de personnes qui possède un compte sur un réseau social. X suit donc une loi binomiale de paramètre n=10 et p=0.70. Calculer l'espérance de X.

Résolution:

$$E(X) = 10 \times 0.7 = 7.$$

Si on formait aléatoirement un grand nombre de groupes de 10 personnes, il y aurait en moyenne 7 personnes qui auraient un compte sur un réseau social par groupe.

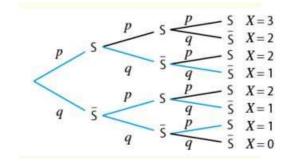
III) Coefficients binomiaux - Triangle de Pascal

Définition:

Soit n et k deux entiers naturels ($k \le n$). On appelle coefficient binomial ou combinaison de k parmi n, noté $\binom{n}{k}$ le nombre de chemins conduisant à k succès parmi n épreuves sur l'arbre représentant un schéma de Bernoulli à n épreuves.

Exemple:

 $\binom{3}{1}$ = 3 : lors de trois répétitions d'une épreuve de Bernoulli, il y a trois chemin avec un seul succès $(S\ \overline{S}\ \overline{S}\ ; \ \overline{S}\ S\ \overline{S}\ \text{ et } \ \overline{S}\ \overline{S}\ S)$



Convention:
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1$$

Cas particuliers:
$$\binom{n}{0} = 1$$
; $\binom{n}{n} = 1$; $\binom{n}{1} = n$; $\binom{n}{n-1} = n$

Propriété (Formule de Pascal):

Pour tout n entier naturel $(n \ge 2)$ et k entier naturel $(1 \le k < n)$, on a :

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Exemple:

$$\begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2 + 1 = 3$$

Il y a trois chemins qui conduisent à 2 succès parmi 3 épreuves sur l'arbre représentant un schéma de Bernoulli à 3 épreuves.

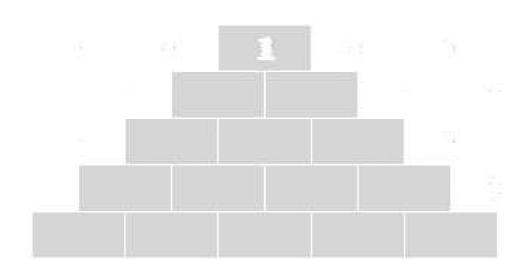
Propriété:

Pour tout n entier naturel $(n \ge 2)$ et k entier naturel $(1 \le k < n)$, on a :

$$\binom{n}{k} = \binom{n}{n-k}$$

Triangle de Pascal:

n k	0	1	2	3	4
0	1				2
1	1	1			×
2	1	2	1		
3	1	3	3	1	
4	1	4	6	4	1



A l'aide du triangle de Pascal :

1)
$$\begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 3 \end{pmatrix} = 3 + 1 = 4$$

$$2) \quad \binom{4}{2} = 6$$

3)
$$\binom{3}{2} = \binom{3}{1}$$

Propriété:

Soit X une variable aléatoire suivant une loi binomiale $\mathbb{B}(n; p)$.

Pour tout nombre entier k tel que $0 \le k \le n$, la probabilité que X soit égale à k est :

$$P(X = k) = \binom{n}{k} \times p^k \times (1 - p)^{n - k}$$

Exemple:

En France, 45 % de la population est du groupe sanguin A. On choisit 5 personnes au hasard dans une grande ville française et on note *X* le nombre de personnes étant du nombre sanguin A dans cet échantillon.

Le nombre d'habitants étant élevé, on considère que le groupe sanguin d'une des personnes est indépendant de celui des autres. X suit la loi binomiale de paramètre n = 5 et p = 0.45.

Quelle est la probabilité que 3 de ces personnes soient du groupe A?

Résolution:

$$P(X = 3) = {5 \choose 3} \times 0.45^3 \times (1 - 0.45)^{5-3} = 10 \times 0.45^3 \times (0.55)^2 \approx 0.28$$

La probabilité que 3 de ces personnes soient du groupe A est d'environ 0.28.

IV) Calculer de probabilités avec la calculatrice

70 % des Français possède un compte sur un réseau social.

On assimile le fait de choisir au hasard 10 personnes à un tirage aléatoire avec remise.

Soit X la variable aléatoire associant à chaque groupe de 10 personnes le nombre de personnes qui possède un compte sur un réseau social. X suit donc une loi binomiale de paramètre n=10 et p=0.70.

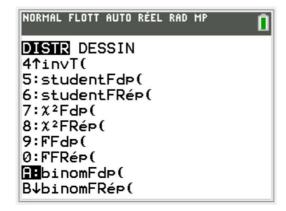
Déterminer P(X = 6) et $P(X \le 2)$.

A) Calculer P(X = k) à l'aide de la calculatrice

Déterminons P(X = 6) à l'aide de la calculatrice.

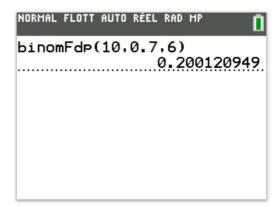
Étape 1 :

Étape 2:



Étape 3:

Étape 4 :

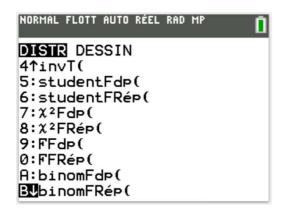


B) Calculer $P(X \le k)$ à l'aide de la calculatrice

Déterminons $P(X \le 2)$ à l'aide de la calculatrice.

Étape 1:

Étape 2:



Étape 3:

Étape 4:

